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Abstract A genetic model for modified diallel crosses is 
proposed for estimating variance and covariance com- 
ponents of cytoplasmic, maternal additive and domi- 
nance effects, as well as direct additive and dominance 
effects. Monte Carlo simulations were conducted to 
compare the efficiencies of minimum norm quadratic 
unbiased estimation (MINQUE) methods. For both 
balanced and unbalanced mating designs, MINQUE 
(0/1), which has 0 for all the prior covariances and 1 for 
all the prior variances, has similar efficiency to MIN- 
QUE(0), which has parameter values for the prior 
values. Unbiased estimates of variance and covariance 
components and their sampling variances could be ob- 
tained with MINQUE(0/1) and jackknifing. A t-test 
following jackknifing is applicable to test hypotheses for 
zero variance and covariance components. The genetic 
model is robust for estimating variance and covariance 
components under several situations of no specific ef- 
fects. A MINQUE(0/1) procedure is suggested for un- 
biased estimation of covariance components between 
two traits with equal design matrices. Methods of un- 
biased prediction for random genetic effects are dis- 
cussed. A linear unbiased prediction (LUP) method is 
shown to be efficient for the genetic model. An example 
is given for a demonstration of estimating variance and 
covariance components and predicting genetic effects. 
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Introduction 

Diallel mating designs with reciprocal crosses provide a 
way for analyzing extranuclear effects. Cytoplasmic and 
maternal effects are the major sources of extranuclear 
effects for plant seeds (Mosjidis and Yermanos 1984), 
and maternal effects are an important component of 
extranuclear effects for mammals (Gowe and Fairfull 
1982). The characterization of extranuclear effects on 
quantitative traits is of importance for seed quality 
improvement and animal breeding. Several genetic 
models have been proposed for analyzing extranuclear 
effects as well as nuclear effects. Henderson (1948) and 
Griffing (1956) provided diallel models including recip- 
rocal effects that are the average extranuclear effects. 
Topham (1966) proposed diallel analysis for maternal 
and maternal interaction effects. Cockerham and Weir 
(1977) partitioned extranuclear effects into maternal 
effects and paternal effects by a bio-model for diallel 
crosses. Mather and Jinks (1982) suggested the use of 
parents, F1, F2, backcross, and their reciprocal crosses 
for estimating maternal additive and dominance effects. 
Eisen et al. (1983) expanded the models of Gardner and 
Eberhart (1966) and Vencovsky (1970) to include ma- 
ternal effects for diallel crosses among random mating 
lines. Considering cytoplasmic genes as the only source 
of maternal effects, Beavis et al. (1987) proposed a model 
including cytoplasmic effects and nuclear-cytoplasmic 
interactions. Foolad and Jones (1992) introduced ge- 
netic models for analyzing quantitative seed characters. 
The model includes testa, cytoplasm, and embryo effects 
as well as endosperm effects. 

Monte Carlo simulations have been used recently to 
evaluate procedures for estimating variance compo- 
nents (Tan and Shiue 1982; Swallow and Monahan 
1984). Keele and Harvey (1989) compared the efficien- 
cies of several methods for estimating variance compo- 
nents of direct and maternal, breeding values and 
covariances between direct and maternal values by an 
additive genetic model (Quaas and Pollack 1980). 
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In this paper, a genetic model is proposed for quanti- 
tative traits influenced by genes with cytoplasmic effects, 
maternal additive and dominance effects, as well as 
direct additive and dominance effects. Unbiasedness 
and efficiency of minimum norm quadratic unbiased 
estimation (MINQUE) (Rao 1970, 1971) for variance 
and covariance components in the genetic model are 
tested by Monte Carlo simulations. The robustness of 
the model is examined under several situations of no 
specific variation. A MINQUE procedure is suggested 
for estimating covariance components between two traits 
with equal design matrices. A method of linear unbiased 
prediction (LUP) for genetic effects is compared to the 
best linear unbiased prediction (BLUP) procedure. Data 
for seed-oil content in Upland cotton (Gossypium hir- 
sutum L.) from Dani and Kohel (1989) are used as an 
example of estimating variance and covariance compo- 
nents and for predicting genetic effects. 

Model and methodology 

Willham (1963) developed a theory for quantitative traits influenced 
by maternal effects. The phenotypic value of individuals can be 
partitioned as 

y = / / +  Go+ Gm+ E~ + Eo 

where/~ is the population mean, G o and E o are direct genetic and 
environmental effects, and Gm and E~ are maternal genetic and 
common environmental effects. The maternal common environmen- 
tal effect can be eliminated by special experimental designs, e.g., 
randomized complete block design. Then E,, is replaced by block 
effect B: 

y = # +  Go + Gm+ B +  Eo 

Both inbred lines and F~s can be used as maternal parents for 
producing plant seeds or animal offspring. They may have the same 
cytoplasmic effects but different maternal genetic effects on their 
offspring. Therefore, cytoplasmic effects should be distinguised from 
maternal genetic effects. A genetic model including cytoplasmic ef- 
fects C is 

y = # +  Go+ C+ Gm + B +  E o 

= # + G + B + e  

with total genetic effect G = G o + C + G,, and residual error e = E o. 
Modified diallel crosses consisting of F ~ s and reciprocal F ~ s from 

a set of completely inbred lines, and backcrosses of F~s to their two 
parents are used in a genetic model with cytoplasmic and maternal 
effects for diploid plant seeds or animals. When Cockerham's (1980) 
general genetic model is expanded by adding cytoplasmic and ma- 
ternal genetic effects but excluding epistatic effects, the total genetic 
effect G can be expressed as 

G= E ziAi + Z 6~jDij + E?iCi + E'Cm,jA,, + E 3m~jDm~j 
i i<_j i i i<_j 

where A~ is the cumulative additive effect of direct genes from line i, 
A i ~ (0, er~); the cumulative dominance e ~ c t  of direct genes is Dij 
(0, a~); the cytoplasmic effect is C~ ~ ~0, erc); the cumulative additive 
effect of maternal genes is A,, ~ (0, era ); and the cumulative domi- 

m 2 
nanceeffectofmaternalgeneslsD m ~ (0 ,%).Therearecovarmnces  
between direct and maternal gene%ffects, Coy (A i, Am ) = erA A and 
Cov(Dij, Dm~) = erD.o~' The genetic model assumes (1) i~ibred i~rents 

randomly sampled from a reference population; (2) no paternal 
effects; (3) no maternal interaction effects; (4) no epistatic effects; (5) no 
genotype-by-environment interaction; and (6) constant inheritance of 
cytoplasmic genes through maternal lines. If some of the first four 
assumptions are not valid, a more complicated model should be 
constructed to include the appropriate effects. 

The genetic model can be rewritten as a linear model for the mean 
observation in the lth block of the kth type of genetic entry from lines i 
andj. 

Yijkl  : # + Gi jk  + Bt + ~ijkt (1) 

where the total genetic effect G~j k depends on the specific genetic entry; 
for FI~ j from maternal line i x paternal l inej  (k = 1): 

Gij 1 = A i + Aj + Dij + C i + 2A,,~ + D,,, 

for backcross BC~ from maternal F~,j x paternal line i(k = 2): 

Gij 2 = 1.5A i + 0.5Aj + 0.5D u + 0.5Dij + C i + A,,~ + Amj + D,,~j 

and for backcross BCj from maternal F~j x paternal line j (k = 3): 

Gij a = 0.5A i + 1.5Aj + 0.5Ojj + 0.5Oij + C i + A,.~ + Amj + Dm~ j 

These modified dialM crosses with F~s, reciprocal F~s, and their 
backcrosses are suitable for cross-pollinated crops or animals. For 
some self-pollinated crops, F 2 seed can be easily obtained from F~ 
plants, and F 2 can then be included in the genetic model. The total 
genetic effect for F2u(k = 4) is 

Gij 4 = A i 4:- Aj + 0.25D u + 0.25Djj + 0.5D U + C i + A,,~ + Am~ + D,% 

The genetic model can be written in a matrix form for all entries of 
the mating design, 

y = l~t + Uxe A + UDe D + Uce c + UAeA~ + UDeD. ' + Uee B + e e 

= 11~ + ~ Uueu 
u = l  

with variance-covariance matrix 

Var(y) = 

(2) 

2 t 2 ! 
G~UAUA + %UDUo + %UcUc 

2 t 2 t 2 t 
+ erA~UAmUAm + erD UD~UDm + erBUBUB 

+ er~.~(U~UA~ + U~,, U~) + er..~dUvU;~ + U .U; )  

+ er~I 

9 

E0uV. 
u = l  

is the where Uu 2 known incidence matrix relating to the random 
vector e u ~ (0, er, I) for u = 1, 2,. . . ,  7; UI, is the transpose of U,,, U7 = I 
is an identity matrix; Vu = UuU', for u = 1, 2,... 6; V7 = (Lit U4 + U4 
U 1 )  , V 8 = ( U 2 U  5 + U 5 U t 2 ) ,  and V 9 = I. 

The M I N Q U E  method (Rao 1970, 1971) can be used to estimate 
variances and covariances for the genetic model. Estimators of vari- 
ance and covariance components 0 for the genetic model can be 
obtained by solving the following M I N Q U E  equations for u, 
v = 1,2 . . . . .  9; 

[tr(Q~VuQ~V~) ] [0u~ = [y'Q~V,Q~y] (3) 

where 

Q~ = V~) ~ -- V(:) 1 l( l 'V~) ~ 1)- ~ l'V(:) ~ 

9 

V(~) = ~ 0~uV,, 
u = l  

and tr is the trace of a matrix (the sum of the diagonal terms). 



The estimates are unbiased, provided the choice of prior values % 
do not depend on the data. MINQUE(0) with the parameter values as 
the prior values gives the minimum variance invariant unbiased 
estimators for linear functions of variance components under the 
normality assumption (Rao 1972). MINQUE(0/1) is a MINQUE 
with prior values choosing 0 for covariances and 1 for variances, and 
with a much simpler matrix form 

6 6 

V(o/1  ) = ~ V u + I = Z UuU'u -}- I 
u = l  u = 1  

For the genetic model of diploid plant seeds and animal offspring, 
the phenotypic variance Vp can be partitioned as 

1/1,= vGo+ Vc + VG + 2C~o.~ + Ve 

=(VA + Vv)+ Vc + (V~ + Vo,,) + 2(C**,, + Cv..~) + v~ 

where Va is direct genetic variance with additive variance V a and 
dominance variance Vo; V c is cytoplasm variance; Va is maternal 
genetic variance with maternal additive variance Va= ~nd maternal 
dominance variance VD=; C a a is genetic covariance consisting 
additive covariance CA.A," and dominance covariance C D D~ Ve is 
residual variance. 

There are usually several different generations (F~,BCf,BCj,  
and/or F2) in the mating design. Although each generation has the 
same kinds of variance components, phenotypic variance for each 
generation is calculated differently: 

2 2 2 2 Vp(F1) = (2fA + fD) + fC + (4Cry., + f ~ )  + 2(2a2.A~) + fe 
2 3 2 2 2 2 2 Vp(F2)=(2 fA+gf fD)+fC+(2 fA  +fry )+2(2aaA 1 2 2 . . . . . .  q -20"D.D, . )q- f  e 

Vp(BCi) = Ve(BCj) 
1 2 1 2 2 2 2 2 1 2 2 

= (27aa + ~ fD) + ac + (2aa~ + fD=) + 2(2aA.a= + g fv.o.) + a~ 

Methods of estimating covariance components with the MIN- 
QUE procedure for multiple traits have been discussed by Rao and 
Kleffe (1980). Those methods involve extensive computations and are 
limited by the number of traits involved. A much simpler MINQUE 
procedure for estimating covariance components can be derived for 
any number of traits for the genetic model. The covariance matrix of 
two variables y~ and Yb with equal design matrices is V,/b = Z9= 1 0~/b~ 
V. where 

Oa~/b~ = f A / A  is the additive covariance component for two traits, 
Oaz/b2 = ffD/D is the dominance covariance component, 
O,,/b~ = fc/c is the cytoplasmic covariance component, 
O~/b. = aA.,/A~ is the maternal additive covariance component, 
0~,/b, = fD~/V~ is the maternal dominance covariance component, 
O~ = %/B is the block covariance component, 
0,4b, = fA/A~ is the average covariance component between direct 

and maternal additive effects, 
O,~/b~ = fio/o,., is the average covariance component between direct 

and maternal dominance effects, 
0~/b ~ = f~/~ is the residual covariance component. 

The expectation of the quadratic function y'~ Q=V,Q~y b is 

9 

tr(Q~V.Q~V~/b) = ~, O~/bvtr(Q~V~Q~V~) 
v = l  

By MINQUE theory the invariant and unbiased estimators of 
covariance components can then be obtained by solving the following 
system of equations for u, v = 1,2 . . . . .  9; 

]-tr(Q~V.Q=V~)] [O.=/b.] = [y'~Q~V.Q~yb~ (4) 

The matrices [tr (Q~V~Q~V~)] and Q~V.Q~ in Eqs. 4 are the same 
as those in Eqs. 3. Therefore, they can be stored for later recall to 
estimate variances and covariances for multiple traits with the same 
design matrices. 

For two traits, phenotypic covariance C e can also be partitioned 
as 

Ce = C~o + Cc + C ~  + 2C~o/~,, + C~ 

= ( C  a q- C o )  q- C c -+- (CAm q- C v . , )  -~ 2 (CA/A~ q- CO/D~ ) -I- C e 
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where CGo is direct genetic covariance and has two components, 
direct additive covariance C A and direct dominance covariance Co; 
C c is cytoplasm covariance; CG~ is maternal genetic covariance with 
maternal additive covariance CA," and maternal dominance 
covariance C v ; C G G is genetic covariance between nuclear and 
maternal gene gffects~ fo '} two traits and has additive covariance CA/A, ' 
and dominance covariance Cv/o;  Ce is residual covariance. 
Phenotypic covariance for each ge'neration can be calculated by 
methods similar to variance calculation. 

Sampling variances for estimates of variance and covariance 
components can be estimated by the jackknife procedure (Miller 
1974; Efron 1982). If 0 is an estimate of a genetic parameter 0 from a 
sample of L observations, and 0(0 is the estimate with the/th observa- 
tion omitted, then the/th pseudovalue is 

Jl(0) = L 0 - ( L -  1)0(0 

The jackknife estimator J(0) of parameter 0 is the mean of the 
pseudovalues. If L is not very large, (J(0) - O)/SE(J(O)) is approxi- 
mately distributed as a t distribution with (L - 1) degrees of freedom. 

In plant and animal breeding, breeders are sometimes interested 
in evaluating the genetic merits of parental lines. If the uth random 
vector e, has independent components with Var(%)= f,2I, but is 
correlated with the vth random vector % with Coy(%, %) = %.fl, then 
the best linear unbiased prediction (BLUP) (Henderson 1963) for the 
uth random vector of genetic effects can be obtained by 

e.u(o) = (G2U;u + fu.uU'u)V~o)l(Y - 1/2) 

= (a2U' + f,.~U;)Q0y 

where 

/2 = (1' V~) 11) - 11' V~) 1 y 

Q 0  = V(o) 1 - -  V(o) 1 ( l ' V ( o )  1 1 )  - 1 l ' V ( o ) l  

Since the true variances and covariances are unknown in practice, 
the unknown parameters 0 can be replaced by prior values c~ from 
prior experiments, from estimates, or from reasonable guesses. There- 
fore, the genetic effects can be predicted by choosing prior values c~ as 
in the case of the MINQUE procedure for variance and covariance 
estimation, 

~,(~) = (%U; + %.~U')Q~y 

where a2 is replaced by the prior value %, and a,.~ by c~,.~. In this 
study, 1 was chosen for prior variances % and 0 for prior covariances 
%.,, to give the MINQUE(0/1) procedure of genetic effect prediction. 
It results in a linear unbiased prediction (LUP) 

~(o/1) = U', Q(o/1)y 
�9 �9 - 1  - 1  �9 where Q(o/1) is Q~ with V(~) replaced by V(o/~ ). The unblasedness and 

efficiency of prediction by this method were compared to the BLUP 
~u(0). The distance between predictor vector ~ and the sampling vector 

is defined as 

Monte Carlo simulations were conducted in this study for estima- 
ting variance and covariance components by MINQUE(0/1) and 
MINQUE(0). Covariance components for two traits were estimated 
by the MINQUE(0/1) procedure. Pseudo-random normal deviates 
with zero mean and unit variance were generated by the method of 
Kinderman and Monahan (1977). For each case 200 simulations were 
run to obtain sample means of estimates, bias, and Mean Squared 
Error (MSE). If the absolute value of bias is less than 10% of the 
parameter value, the parameter is said to be well estimated. In cases 
where the parameter value of variance or covariance component is 
zero, bias < 1% of the sum of variances and covariances is considered 
to be negligible. MSE is calculated by [Vat(0)+ (bias)2], which is 
usually used as a main criterion for comparing efficiency of estimation 
methods. 

In this study, randomized complete block designs with three 
blocks were used with genetic entries assigned at random within each 
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block. The  block was used as a resampl ing  uni t  for the  jackknife  
procedure.  W h e n  es t imated  sampl ing  var iances  of  the  es t imates  were 
obtained,  the  null  hypo theses  of  no var ia t ion  for r a n d o m  effects were 
tested. Power  values (the probabil i t ies of  rejecting the  null  hypothe-  
ses) were ob ta ined  from 200 s imula t ion  runs.  Since block var iance is 
usua l ly  of  no t  m u c h  concern  to breeders,  unb iased  es t imates  for block 
var iances  are no t  presented  in this paper.  

Monte Carlo simulation results 

All of the simulations were based on modified diallel 
crosses with three randomized complete blocks. The 
balanced design included Fls , reciprocal Fls, and their 
backcrosses from five inbred lines. Seven inbred lines 
were used for constructing unbalanced design by assum- 
ing that these lines are divided into two incompatible 
groups (lines one through five as group 1, and lines six 
and seven as group 2) within which lines could not mate 
to each other. Both the balanced design and the unbal- 
anced design had the same experimental sizes. 

For both balanced and unbalanced modified diallel 
crosses, MINQUE(0/1) and MINQUE(0) give similar 
results for bias and MSE of estimated variance and 
covariance components when the correlation between 
direct genetic effects and maternal genetic effects is high 
(p = 0.9) or weak (p = 0.1). Therefore, MINQUE(0/1) is 
almost as efficient as MINQUE(0) for estimating vari- 
ance and covariance components for the genetic model 
with both balanced and unbalanced data. 

Estimates and their sampling variances can be ob- 
tained by the MINQUE(0/1) method with the jackknife 
procedure. For three different levels of correlations be- 
tween direct and maternal genetic effects (p = 0.9, 0,5, 
and 0.1) all of the variance components are well es- 
timated with similar bias, MSE, and power value for 

both balanced and unbalanced mating designs. It is 
indicated that MINQUE(0/1) is equally efficient for 
estimating variance components of the genetic model 
under whatever correlations between direct and ma- 
ternal genetic effects. 

The simulation results of bias, MSE, and power value 
are summarized in Table 1 for the genetic model with a 
moderate correlation (p = 0.5) between direct and ma- 
ternal effects. In this study of balanced five-parent and 
unbalanced seven-parent modified diallel crosses with 
three blocks, the significance of non-zero 002, O-Am , 2  00Dm'2 

2 and a e can be detected with a probability of over 75%. 
Significant a 2 and 0 ~ are detectable with a probability 
near 50%. The probability of detecting the significance 
of additive and dominance covariance components be- 
tween direct and maternal effects is relatively low, and 
will increase (or decrease) when correlations become 
larger (or smaller). Robustness of estimation can be 
tested by simulation under the conditions of no specific 
variation. If there are no cytoplasmic effects (002 = 0), 
other parameters can be estimated with similar bias, 
MSE, and power value as when cytoplasmic effects are 
present. Non-significance of the cytoplasmic variance 
component can be detected with a probability over 
96%. Without maternal genetic effects (002,, = 002,, = 
00A.Am =00D.Om = 0) and/or cytoplasmic effects (O-c a = 0), 
direct additive and dominance variance components 
and error variance can be detected with a similar prob- 
ability as when these effects exist. Conclusions of non- 
significance of maternal variance components and 
covariance components, and/or cytoplasmic variance 
components can be drawn with a probability around 
94 ~ 99%. When there are no dominance variations 
(002 = 0.2 = 00D.Dm = 0), other parameters are well es- 
timated. MSE is decreased and power value is increased 

Table 1 Bias, M S E  and  power  
value f rom s imula t ions  by M I N -  
QUE(0/1)  with the  jackknife  
p rocedure  for modif ied  diallel 
crosses 

a Probabi l i ty  of  correctly reject- 
ing the  null  hypothes i s  of  no 
var ia t ion by the t-test with 
ct = 0.05 
u Bias > 10% of the  true value 

P a r a m e t e r  True  value Balanced design U n b a l a n c e d  design 

Bias M S E  Power  a Bias M S E  Power  a 

O n e  trai t  

z 25 - 0.31 a~ 
% 16 - 0.00 

2 10 0.49 O" c 

a 2 36 - 2.44 
Am 
2 av~ 25 1.34 

aA.Am 15 -- 0.48 

~rD.Dm 10 0.16 
2 

a e 20 - 0.07 

Two trai ts  
GA/A 12.5 -- 0.87 

(TD] D 8 - O. 13 

ac/c 5 0.09 

a A m / A  m 18 - -  1.17 

aD~/~ m 12.5 - 0.42 

aA/a," 15 - 0.91 
aD/D~ 10 -- 0.12 

O'e/e 10 0 .11  

419,7 0.79 0.44 344.6 0.75 
89.5 0.56 0.75 110.6 0.45 

63,4 0.47 0.25 52.1 0.43 

908.2 0.81 - 0.54 629.5 0.85 

169.8 0.84 0.84 178.9 0.84 

304.1 0.52 0.23 255.9 0.50 

89.6 0.36 - 0.05 88.5 0.28 

6.3 0.99 0.06 5.5 0.99 

287.1 0.37 0.69 196.2 0.35 

54.7 0.17 - 0.76 60.1 0.14 

41.0 0.18 - 0.05 30.5 0.11 

418.4 0.42 - 0.21 385.5 0.46 

108.6 0.38 -- 1.11 90.4 0.35 
303.8 0.51 0.72 234.5 0.54 

75.6 0.37 - 1.308 68.7 0.28 

3.3 0.70 0.10 3.7 0.67 



for direct and maternal additive variance components. 
Non-significance of dominance variance and covariance 
components can be detected with a probability near 95 %. 
The genetic model is robust for estimating variance and 
covariance components even though there are no cyto- 
plasmic and maternal effects or no dominance effects. 

Estimation of covariances between two traits were 
tested for unbiasedness and efficiency by MINQUE(0/1) 
with the jackknife procedure (Table 1). The estimate of 
average covariance between direct and maternal domi- 
nance effects, riD/D,,, is slightly biased only for the unbal- 
anced mating design. Other covariance components are 
well estimated for both balanced and unbalanced modi- 
fied diallel crosses. The power values are over 50% for 
aA/Am and O-e/e, but less than 50% for other covariance 
components. More genetic materials are needed for 
constructing modified diallel crosses in order to detect 
the significance of covariance components of two traits. 

In this study, the balanced and unbalanced mating 
designs had the same experimental sizes. There are no 
considerable differences of bias, MSE, and power value 
for variance and covariance components between these 
two mating designs. It is indicated that MINQUE(0/1) 
has almost an equal efficiency in estimating variance 
and covariance components for balanced and unbal- 
anced modified diallel crosses with the same experimen- 
tal sizes. 

The linear unbiased prediction, ~u<o/1) with prior 
values of 1 for all variance components and 0 for all 
covariance components, were compared to the BLUP 
~u(0) using parameter values. Simulations were conduc- 
ted for estimating bias of predicted random effects and 
distance between predictor vector ~, and sampling vec- 
tor g,. Table 2 presents the simulation results with 
A i ,-~ U(0, 25), Dij ~ N(0, 16), Ci ~ N(0, 10),A,n, 
N (0, 36), D,,, ~ N(0, 25), B~ ~ N (0, 20), e,j -,~ N(0, 20), 
Cov(A~, Am,)= 15, and Cov(D~, D,,,)= 10. Both predic- 
tion methods give extremely low bias for mean of pre- 
dicted genetic effects. Hence, MINQUE(0/1) gives un- 
biased prediction for random genetic effects just as the 
BLUP does. The BLUP e,(0) should give the smallest 
distance for the predicted genetic effects among all linear 
unbiased predictions (Henderson 1979). The distance of 
~,<o/1) to g, approaches that of the BLUP e,10~ for all the 
genetic effects in balanced mating design. Except for 
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dominance effect D, the distance of ~u(o/1) is similar to 
that of the BLUP 6u(0) for all of the other predicted 
genetic effects in unbalanced mating design. It is in- 
dicated that prediction choosing one for the prior vari- 
ances and zero for the prior covariances is unbiased and 
quite efficient. 

Example: seed-oil content in cotton 

Data of a four-parent modified diallel cross with F1., 
FI~ j x Pi, FI~j x Pj, and F2, ~ from Dani and Koh~l 
(1989) are used as an example for estimating variance 
and covariance components and for predicting the gen- 
etic merits of seed-oil percentage and seed-oil index 
(milligrams of oil per seed) in cotton (Gossypium hir- 
suture L.). Since only four parents would not normally be 
regarded as a random set of parents to justify the use of a 
random genetic model, the analysis serves mainly to 
demonstrate the application of the genetic model. 

The cell mean of each genetic entry served as a 
resampling unit in the jackknife procedure. With jack- 
knife estimates and their standard errors, a one-tail 
t-test was conducted for testing variance components 
while a two-tail t-test was used for testing covariances or 
genetic effects. The degrees of freedom for a t-test were 
47. Estimates of variance and covariance components 
and their standard errors by MINQUE(0/1) method for 
cotton seed-oil content are summarized in Table 3. 
Highly significant variances were detected for maternal 
additive effects and residual errors of seed-oil percentage 
and seed-oil index. Since additive effects of maternal 
genes were the major contributions of genetic variation, 
commercial cotton varieties with high seed-oil content 
could be developed by selection based on maternal 
plants. Negative %̂2 indicated no variation of cytoplas- 
mic effects for these two traits. For seed-oil percentage, 
estimates of direct variance components and covarian- 
ces between direct and maternal effects were small and 
not significant. Therefore, seed-oil percentage might be 
controlled mainly by maternal gene effects. For seed-oil 
index, significance of variance was observed for direct 
dominance effects. Although a~ was not significant, 
O-A.Am was significantly negative. It was suggested that 
there might be some additive effects of seed genes and 

Table 2 Prediction of genetic ef- 
fects by LUP and BLUP 
methods for modified diallel 
crosses (Absolute bias for mean 
prediction of genetic effects is 
10 - 5 ~  10 .6 for 6u(o/1), and 
10 .3 ~ 10 - s  for 6.(0) ) 

** Significantly different from 
the BLUP at the 0.01 signifi- 
cance level 

Parameter Balanced design Unbalanced design 

A 5.51 5.64 5.48 5.66 6.3 5.99 6.30 5.95 
D 11.20 7.15 10.78 6.73 12.27"* 5.72 11.79 4.75 
C 3.55 2.68 3.53 2.68 4.46 2.39 4.40 2.41 
A m 6.44 8.88 6.39 9.08 7.25 8.43 7.21 8.62 
D m 11.56 8.38 11.41 8.71 12.99 10.24 12.88 10.11 

Mean Variance M e a n  Variance M e a n  Variance M e a n  Variance 

Distance of Distance of Distance of Distance of 
~u(O/1) ~u(O) ~u(O/1) ~u(O) 



158 

that they could behave differently than those of maternal 
plant genes. Seed-oil index was controlled by both  direct 
and maternal gene effects. About 64% of the total genetic 
variance was contr ibuted by maternal  genetic variances, 
among which 76% was maternal  additive variance. 
Covariance components  between two traits were signifi- 
cantly positive for maternal  additive effects and residual 
errors. Other  covariance components  were negligible. 

Predicted genetic effects and their s tandard errors 
are listed in Table 4 only for those with significant 
variances. Since maternal  additive effects were the most  
impor tant  contr ibut ion of variance components  for 
seed-oil gontent ,  the genetic merits of parental  lines 
could be evaluated mainly based on the predicted ma- 
ternal additive effects Aml. Both parental  line 1 (SA 1169) 
and line 4 (SA 59) were high seed-oil percentage lines. 
Line 1 (A,, 1 = 1.049) might be more  superior to line 
4(Am~ = 0.341) for increasing seed-oil percentage in the 
breeding program. Though  both  parental  line 1 and line 
4 had high values of seed-oil in@x, their maternal  
additive effects (A,,~ = 2.258, and A,,~ = -0 .868 )  were 
different. Heterosis for seed-oil content  can be evaluated 
by the average of homozygous  dominance effects. Since 
( Z i D u ) / 4  was - 0.337 ( _+ 0.101) for seed-oil index, in- 
breeding depression was expected for homozygous  
genotype of seed. 

Discussion 

Variances and covariances for the genetic model  pro- 
posed in this paper  can also be estimated by other  mixed 
model  approaches (Searle et al. 1992). As compared  to 

methods of maximum likelihood (ML) (Hartley and Rao 
1967) and restricted maximum likelihood (REML) (Pat- 
terson and Th o m p so n  1971), M I N Q U E  has the advan- 
tages of simple computa t ion  and no requirement  for 
normal i ty  distribution. Estimates obtained by MIN-  
Q U E  methods are invariant  and unbiased (Rao 1971). 
Though  the choosing of different prior  values will give 
unbiased estimates, they may not  be equally efficient. 
MIN Q U E(1 )  suggested by Giesbrecht (1985) is a MIN-  
Q U E  method  setting all the prior values as 1. Monte  
Carlo simulations have been conducted with M I N Q U E  
(1) for the genetic model  (results are not  presented in this 
paper). MINQUE(0 /1 )  is more efficient than MIN-  
QUE(1),  especially when the true covariances between 
direct and maternal  genetic effects are very small. An- 
other  advantage of M I N Q U E  (0/1) over M I N Q U E  (1) is 
that  M I N Q U E ( 0 / 1 )  has less computa t ion  for matrix 
v(o/%. 

By M I N Q U E  (0/1) with the jackknife procedure,  un- 
biased estimates of direct, cytoplasmic and maternal  
variance, and covariance components  could be obtained 
for the genetic model. It has been proved that the genetic 
model  is robust  under  several situations of no specific 
effects. By the jackknife procedures,  estimated sampling 
variances for estimates of variance and covariances 
components  give powerful t-tests for detecting signifi- 
cance of variation. If the null hypothesis of zero variance 
or covariance is true, the power value (or P-value) is 
a round  the e- value (0.05) in most  cases. The t-test for 
variance and covariance components  appears to be 
appropriate.  

MINQUE(0 /1 )  with the jackknife procedure can also 
be conducted for unbiased estimation of genetic 

Table 3 Estimates of variance 
and covariance components 
from cell mean data for seed-oil 
content in cotton 

* P < 0.05, ** P < 0.01 

Variance Seed-oil(%) Seed-oil Index Covariance Oil (%) versus 
Estimate _+ SE Estimate • SE Index Estimate _+ SE 

2 - -  0.098 + 0.329 a A 0.016 • 0.119 1.727 + 1.366 ~rA/A _ 
2 _ _  0.797 + 0.699 a D 0.092 • 0.296 3.419" + 1.958 c%/D _ 
2 a c - 0.046 • 0.085 - 0.020 • 0.791 Crc/c - 0.087 _. 0.185 
z CrAm 1.110"* • 0.381 4.710"* • 1.875 ~Am/Am 2.013"* -- 0.743 
2 aDm 0.338 • 0.295 2.943 • 2.001 ~rDm/D ~ 0.944• 0.706 

aA.Am -- 0.029 • 0.221 -- 3.599* _+ 1.528 ~rA/A~ -- 0.142 • 0.471 
%.ore -- 0.056 • 0.214 0.768 + 1.159 %/Din -- 0.282 _ 0.450 

2 a e 0.567** • 0.167 3.032** • 1.014 O'e/e 0.931" • 

Table 4 Predicted genetic effects 
and standard errors from cell 
mean data for seed-oil content 
traits in cotton 

* P < 0.05,  ** P < 0.01 

Parent 

i=1 i=2 i=3 i=4 

Seed-oil percentage 
A , , ~  1.049"*_+0.197 --0.067_+0.171 -1.324"*-t-0.186 0.341'+0.163 
Seed oil index (rag) 
0il - 1.941"* • 0.449 
D i 2  - -  1.415" • 0.547 1.237" • 0.521 
Di3 0.483 • 0.536 - 0.252 • 1.033 - 0.200 _ 0.683 
Di4 2.879"* • 0.603 --1.053"• --1.531"• -- 1.269' • 0.491 
A,,~ 2.258** • 0.374 - 1.152"* • 0.416 - 2.544** • 0.572 -- 0.868* + 0.469 
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covariance components for multiple traits with the same 
design matrices. By this method covariance components 
between two traits are as easily estimable as in the 
one-trait case. In real situations for two variables Ya 
and Yb with equal design matrices, it is possible that 
Cov(Ai ,Am~ ) ~ Cov((Aib, Am. ), or Cov(Dija, D,,ij ) 
Cov(Di~b, Dml. ). In this study~"only average covaria~aces 
of direct and 'l:naternal effects between two traits (aa/Am 
and O'D/Dm ) are estimable. 

In plant and animal breeding, genetic merits of breed- 
ing materials are sometimes more interesting to the 
breeder than the variance and covariance components. 
Random genetic effects in the genetic model are not 
estimable separately by constructing side conditions, 
but they are predictable by the BLUP procedure (Hen- 
derson 1963). Instead of using estimates of variances and 
covariances for predicting genetic effects, ~,(o/1) with 0 
for covariances and i for variances is easier to compute. 
It turns out that ~u(0/1) is an unbiased and efficient 
predictor of %. 

We assume that all the genetic effects in the model are 
random effects. Inbred parents are considered as a 
random sample from a reference population. For the 
general analysis of diallel cross involving Fls, a sample 
size of eight to ten parents is reasonable. Since the 
modified diallel cross including F~s, BCs, and/or FzS , 
the sample size is about three or four times larger than 
the general diallel analysis with the same number of 
parents. Plant breeders usually cannot afford very large 
sample sizes in conducting genetic research since seeds 
of Fxs and backcrosses should be produced by manual 
hybridization. Simulation studies suggest that quite 
good estimation could be obtained if five parents are 
selected at random for mating. When more parents are 
involved in mating, power of tests for detecting signifi- 
cance could be increased. Modified partial diallel cross- 
es can be constructed for increasing sampling size but 
not experimental size. 
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